BS(start, end): middle = (start + end) / 2

Base case 1: array[middle] == value, return it
Base case 2: start > end, return nothing found

value < array[middle]: BS(start, middle - 1)
value > array[middle]: BS(middle + 1, end)

Recursion:
- 47
 - BS(0, 11)
 - BS(0, 4)
 - BS(6, 11)
 - BS(28)
 - BS(0, 1)
 - BS(3, 4)
 - BS(6, 7)
 - BS(9, 11)
 - BS(13)
 - BS(0, -1)
 - BS(1, 1)
 - BS(3, 2)
 - BS(6, 5)
 - BS(7, 7)
 - BS(9, 9)
 - BS(17)
 - BS(47)
 - BS(32)
 - BS(51)
 - BS(54)
 - BS(75)
 - BS(89)
 - BS(96)
 - BS(98)

Array:

0 1 2 3 4 5 6 7 8 9 10 11
13 17 28 32 33 47 51 54 75 89 96 98

Tree Terms:
- root
- leaves
- branch/subtree
- depth
- parent
- child
- sibling
- height
- degree
- size

Balanced vs Unbalanced:

For balanced binary trees:

\[
\text{degree}^{\text{height}} - 1 = \text{size}
\]

\[
\log(\text{size} + 1) = \text{height}
\]

\[
\text{degree is base of log}
\]

Worst case / least balanced:

\[
\text{height} = \text{size}
\]

Stepping through a balanced tree (top to bottom): \(O(\log(n)) \)
Stepping through an unbalanced tree (top to bottom): \(O(n) \)